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Abstract: The winds theory is based on PDEs whose unknown is the velocity vector field depending on time and spatial 

coordinates. The geometric dynamics is formulated using ODEs associated to a flow and a Riemannian metric, where the 

unknown is the velocity vector field depending on time. In this paper, we join these ideas showing that some geometric 

dynamics models generate winds. The second part of this paper is focused on the stability analysis of the considered models. 
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1. Introduction 

The wind usually refers to the horizontal component of the 

air motion relative to the earth. Mathematically, the wind is 

represented by the velocity vector field ��(�, �, �, �), where (�, �, �) ∈ ℝ� and � ∈ ℝ. The forces applied to an element of 

air, moving almost horizontally over the earth’s surface with 

velocity ��, are: 

(1) the inertial force, represented by the acceleration 
D
��
Dt
= ∂
��

∂t
+(��∇)��; 

(2) the pressure gradient force, represented by − �� grad	�;  
(3) the deviating force due to the earth’s rotation, 

represented by �� × ���; 

(4) the shearing stresses produced by the relative motion of 

the layers above and below, represented by ���. 

Consequently, the partial differential equation of motion is 

of the form 

D
��
Dt
= − �� grad	�	 − �� × ��� + ���                    (1) 

and the winds are classified according to the relative 

importance of the four terms from the above relation: 

Geostrophic wind: The motion is stationary (i.e. it is 

independent by �) and only terms (2) and (3) remain. The 

wind is expressed in terms of the horizontal gradient pressure 

and is along the isobars. 

Gradient wind: The term (1)  is assumed to be 

approximately equal to �� "⁄ , where "  is the radius of 

curvature of the isobars. The acceleration in the direction of 

motion is ignored. The wind is given in terms of the pressure 

gradient by a quadratic equation. The term (4) is omitted. 

Antitriptic wind: The terms (2) and (4) are dominant and (4) represents the friction at the ground and it is therefore a 

force in the opposite direction to the motion. The wind is 

towards low pressure. 

Ageostrophic wind: Departure from the geostrophic wind 

may be produced in a variety of ways in frictionless motion. 

The term (4) is dominant and it expresses the convection at 

the earth’s surface. 

The geometric dynamics (see [8, 9, 10]) is similar with the 

winds theory (see [6, 10, 4]): instead of the velocity vector 

field ��(�, �, �, �), where (�, �, �) ∈ ℝ�  and � ∈ ℝ, we work 

with the velocity vector field ��(�) along a curve. In this case, 

the term (��∇)��  doesn’t exist in the total acceleration, 
D
��
Dt
= ∂
��

∂t
+(��∇)�� . For other connected viewpoints on this 

subject, the reader is directed to [1, 2, 3, 5, 7]. 

2. Winds and Geometric Dynamics 

2.1. Hopf Geometric Dynamics and Hopf Wind 

Consider the Riemannian manifold %ℝ�, &'() (see &'( as the 

canonical (usual) metric in 	ℝ� ; &'( 	= Kronecker's symbol) 

and the non-linear system of differential equations 

*+,*- = −�� + ��./ − (��� + ���)0, *+1*- = �� + ��./ − (��� + ���)0, (2) 

which describes a bifurcation of Hopf type. Let 2 = (2�, 2�) 
be a vector field on ℝ�, where 
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2�(��, ��) = −�� + ��./ − (��� + ���)0,           (3) 2�(��, ��) = �� + ��./ − (��� + ���)0 
and let 3(��, ��) = �� ∥ 2 ∥� be the energy of the vector field 2 . By a direct computation, we get rot	2 = (0,0,2)  and div	2 = 2/ − 3(��� + ���). 

The Hopf geometric dynamics is described by 

*1+:*-1 = ;<;+: + ∑ >;?:;+@ − ;?@;+:A�(B� *+@*- , C = 1,2,        (4) 

or 

*1+,*-1 = −2 *+1*- + ;<;+, , *1+1*-1 = 2 *+,*- + ;<;+1.          (5) 

Now, let us explain how a wind is produced by the Hopf 

flow and by the Euclidean metric. Firstly, we extend the Hopf 

vector field from ℝ� to ℝ�. In this sense, we introduce 2 = (2�, 2�, 2�), 2�(��, ��, ��) = −�� + ��./ −(��� + ���)0, 2�(��, ��, ��) = �� + ��./ − (��� +���)0, 2�(��, ��, ��) = 0. 

The vector field rot	2 = (0,0,2) can be written as grad	E, 

where E(��, ��, ��) = 2��. Consequently, in vector notation, 

the wind produced by the Hopf flow and by the Euclidean 

metric is described by the second-order equation 

*1+*-1 = grad	3 + grad	E × *+*- .                  (6) 

2.2. Rabinovich Geometric Dynamics and Rabinovich Wind 

Here, we use the Riemannian manifold %ℝ�, &'()  and 

consider the following non-linear system of differential 

equations 

*+,*- = ����, *+1*- = −����, *+F*- = ����,             (7) 

which is known as Rabinovich-type system. Let 2 =(2�, 2�, 2�) be a vector field on ℝ�, where 2�(��, ��, ��) = ����, 2�(��, ��, ��)	= −����, 2�(��, ��, ��) = ����                   (8) 

and let 3(��, ��, ��) = �� ∥ 2 ∥�  be the energy of the vector 

field 2. By direct computation, we obtain rot	2 =(2��, 0, −2��) and div	2 = 0. 

Remark 2.2.1 It is well-known that the divergence of a 

vector field defines the speed of contraction-dilation of the 

volumes by the flow generated by the vector field. In our 

case, we obtained div	2 = 0 , so 2  is a solenoidal vector 

field, that is, the Rabinovich flow conserves the areas. 

The Rabinovich geometric dynamics is described by 

*1+:*-1 = ;<;+: + ∑ >;?:;+@ − ;?@;+:A�(B� *+@*- , C = 1,2,3,       (9) 

or 

*1+,*-1 = 2�� *+1*- + ;<;+, , *1+1*-1 = −2�� *+,*- − 2�� *+F*- + ;<;+1, (10) 

G���G�� = 2�� G��G� + H3H��. 
Let us introduce the wind produced by the Rabinovich 

flow and by the Euclidean metric. We remark that rot	2 =(2��, 0, −2��)  can be written as gradE, where E(��, ��, ��) = ��� − ���.  So, in vector notation, the wind 

produced by the Rabinovich flow and by the Euclidean 

metric is given by the second-order equation 

*1+*-1 = grad	3 + grad	E × *+*- .                  (11) 

2.3. Van der Pol Geometric Dynamics and Van Der Pol 

Wind 

Let us start with the Riemannian manifold %ℝ�, &'() and 

consider the following non-linear system of differential 

equations 

*+,*- = ��, *+1*- = −I(��� − 1)�� − ��,             (12) 

which is known as van der Pol oscillator, I being a control 

parameter. Let 2 = (2�, 2�) be a vector field on ℝ�, with 2�(��, ��) = ��, 2�(��, ��) = −I(��� − 1)�� − ��		   (13) 

and let 3(��, ��) = �� ∥ 2 ∥� be the energy of the vector field 2. By a simple calculation, we get rot	2 = (0,0, −2I���� −2) and div	2 = −I��� + I. 

The van der Pol geometric dynamics is described by 

*1+:*-1 = ;<;+: + ∑ >;?:;+@ − ;?@;+:A�(B� *+@*- , C = 1,2,        (14) 

or 

*1+,*-1 = (2 + 2I����) *+1*- + ;<;+, , *1+1*-1 = (−2 − 2I����) *+,*- + ;<;+1. (15) 

The wind produced by the van der Pol flow and by the 

Euclidean metric is determined as follows. We extend the van 

der Pol vector field from ℝ�  to ℝ� . In this direction, we 

introduce the vector field 2 = (2�, 2�, 2�), with 2�(��, ��, ��) = ��, 2�(��, ��, ��) = −I(��� − 1)�� −��, 2�(��, ��, ��) = 0. The vector field J:= (0,0, −2I���� −2)  can be written using the Monge representation J =grad	3� × 3�grad	3�. Thus, in vector notation, the wind 

produced by the van der Pol flow and by the Euclidean 

metric is given by the second-order equation 

*1+*-1 = grad	3 + J × *+*- .                       (16) 

2.4. Phytoplankton Geometric Dynamics and 

Phytoplankton Wind 

Further, we shall consider a biological model. We also use 

the Riemann manifold %ℝ�, &'().  Define the non-linear 

system of differential equations 
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*+,*- = 1 − �� − +,+1L , *+1*- = (2�� − 1)��, *+F*- = +,L − 2���,  (17) 

which describes the Phytoplankton Growth Model, where �� 

is the substrate, �� is the phytoplankton biomass and �� is the 

intracellular nutrient per biomass. 

Let 2 = (2�, 2�, 2�) be a vector field on ℝ�, where 

2�(��, ��, ��) = 1 − �� − +,+1L , 2�(��, ��, ��) = (2�� − 1)��, (18) 

2�(��, ��, ��) = ��4 − 2��� 

and let 3(��, ��, ��) = �� ∥ 2 ∥�  be the energy of the vector 

field 2. By simple computations, we get rot	2 =M−2��, − �L , − +,L N and div	2 = −2 − +1L − 2��. 
The Phytoplankton geometric dynamics is described by 

*1+:*-1 = ;<;+: + ∑ >;?:;+@ − ;?@;+:A�(B� *+@*- , C = 1,2,3,       (19) 

or 

*1+,*-1 = − +,L *+1*- − �L *+F*- + ;<;+, , *1+1*-1 = +,L *+,*- + 2�� *+F*- + ;<;+1, (20) 

G���G�� = 14G��G� − 2�� G��G� + H3H��. 
Let us introduce the wind produced by the Phytoplankton 

flow and by the Euclidean metric. The vector field O:=M−2��, − �L , − +,L N  can be written using the Monge 

representation O = grad	3� × 3�grad	3�. So, in vector 

notation, the wind produced by the Phytoplankton flow and 

by the Euclidean metric is described by the second-order 

equation 

*1+*-1 = grad	3 + O × *+*- .                         (21) 

3. Stability Analysis of Considered 

Models 

3.1. Stability Analysis of Hopf Bifurcation 

The equilibrium point %��∗(�), ��∗(�)) of the bifurcation of 

Hopf type is the solution of the following algebraic system 

−�� + ��./ − (��� + ���)0 = 0, �� + ��./ − (��� + ���)0 = 0,  (22) 

where / is a parameter. In this case, we get %��∗(�), ��∗(�)) =(0,0). Denoting �� = ��∗ + I��, �� = ��∗ + I�� ,                  (23) 

the linearization around the equilibrium point (0,0) is 

yR = >/ − 3��� − ��� −1 − 2����1 − 2���� / − 3��� − ���A(+,	∗ ,+1	∗ ) ∙ �,     (24) 

that is, 

yR = M/ −11 / N ∙ �,                              (25) 

where � = (��, ��) is defined as in the previous. By direct 

computation, we get det(U − VW�) = V� − 2/V + /� + 1 =V� − Tr(U)V + det(U) (see U as the Jacobian matrix of the 

function (−�� + ��./ − (��� + ���)0, �� + ��./ − (��� + ���)0), 
computed at %��∗(�), ��∗(�)) = (0,0) ). Solving the equation det(U − VW�) = 0, we obtain the solutions V� = / + C, V� =/ − C. Consequently, for / > 0 the previous linearized system 

is unstable, for / < 0 is asymptotically stable, and at / = 0 

(i.e. V�,� = ±C ) we find \](±C) = \^(±C) = 1, so the 

linearized system is stable (see \](_),\^(_) as algebraic 

multiplicity, respectively geometric multiplicity of _). 

Let us summarize the previous analysis as 

Proposition 3.1.1 For the non-linear system of differential 

equations (bifurcation of Hopf type) 

*+,*- = −�� + ��./ − (��� + ���)0, *+1*- = �� + ��./ − (��� + ���)0, (26) 

the linearization around the equilibrium point (0,0) is 

yR = M/ −11 / N ∙ �.                           (27) 

Moreover, the linearized system is: asymptotically stable ⇔ / ∈ (−∞, 0); stable ⇔ / = 0; unstable ⇔ / ∈ (0,∞). 
3.2. Stability Analysis of Rabinovich System 

We shall follow the same steps as in the previous case. The 

algebraic system ���� = 0,−���� = 0, ���� = 0                (28) 

gives us the equilibrium point %��∗(�), ��∗(�), ��∗(�)) = (0,0,0) 
of the Rabinovich system. The linearization around the 

equilibrium point (0,0,0) is 

yR = b 0 �� ��−�� 0 −���� �� 0 c
(+,	∗ ,+1	∗ ,+F∗)

∙ �,             (29) 

that is, 

yR = b0 0 00 0 00 0 0c ∙ �.                        (30) 

By a direct computation, we get det(U − VW�) = −V� (see U as the Jacobian matrix of the function (����, −����, ����), 
computed at %��∗(�), ��∗(�), ��∗(�)) = (0,0.0)). Solving the 

equation det(U − VW�) = 0, we obtain the multiple solution V� = V� = V� = 0. Consequently, the linearized system is not 

asymptotically stable. By \](0) = \^(0) = 3, we conclude 

the linearized system is stable. 

Proposition 3.2.1 For the non-linear system of differential 

equations (Rabinovich system) 

*+,*- = ����, *+1*- = −����, *+F*- = ����,            (31) 

the linearization around the equilibrium point (0,0.0) is 
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yR = b0 0 00 0 00 0 0c ∙ �.                      (32) 

Moreover, the associated linearized system is stable but 

not asymptotically stable. 

3.3. Stability Analysis of Van Der Pol System 

Solving the following non-linear algebraic system �� = 0,−I(��� − 1)�� − �� = 0,              (33) 

we get the equilibrium point %��∗(�), ��∗(�)) = (0,0)  of the 

van der Pol system. The associated linearized system (around 

the equilibrium point) is 

yR 	= > 0 1−2I���� − 1 −I(��� − 1)A(+,	∗ ,+1	∗ ) ∙ �,	      (34) 

that is, 

yR 	= M 0 1−1 IN ∙ �.                         (35) 

By direct computation, we get det(U − VW�) = V� − IV +1 = V� − Tr(U)V + det(U) (see U as the Jacobian matrix of 

the function (��, −I(��� − 1)�� − ��), computed at %��∗(�), ��∗(�)) = (0,0)). We get d ≐ det(U − VW�) = I� − 4. 

There are three cases: 

a) d = 0 ⇔ I = ±2 ⇔ V� = V� = f� = ±1. So, for I = −2  the associated linearized system is 

asymptotically stable, and for I = 2 it is unstable. 

b) d > 0 ⇔ I ∈ (−∞,−2) ∪ (2, +∞). The solutions are 

given by V�,� = f±hf1iL� . For I > 2  the system is 

unstable (the both solutions do not have negative real 

part). For I < −2 the system is asymptotically stable 

(the both solutions have negative real part). 

c) d < 0 ⇔ I ∈ (−2,2).  The solutions are given by V�,� = f±'hLif1� . For I ∈ (−2,0)  the linearized system 

is asymptotically stable. For I ∈ (0,2)  the linearized 

system is unstable. Finally, for I = 0 (V�,� = ±C) we 

get \](±C) = \^(±C) = 1, that is the associated 

linearized system is stable. 

Proposition 3.3.1 For the non-linear system of differential 

equations (van der Pol system) 

*+,*- = ��, *+1*- = −I(��� − 1)�� − ��,           (36) 

the linearization around the equilibrium point (0,0) is 

yR 	= M 0 1−1 IN ∙ �.                           (37) 

Moreover, the linearized system is: asymptotically stable ⇔ I ∈ (−∞, 0); stable ⇔ I = 0; unstable	⇔ I ∈ (0,∞). 
3.4. Stability Analysis of the Phytoplankton Growth Model 

Solving the following non-linear algebraic system 

1 − �� − +,+1L = 0, (2�� − 1)�� = 0, +,L − 2��� = 0,    (38) 

we get the equilibrium points %��∗(�), ��∗(�), ��∗(�)) =M2, −2, ��N, or M1,0, − √�L N, or M1,0, √�L N of the Phytoplankton 

Growth Model. The associated linearized systems (around 

the equilibrium points) are 

yR = k−1 −
+1L − +,L 00 2�� − 1 2���L 0 −4��l(+,	∗ ,+1	∗ ,+F	∗ )

∙ �,     (39) 

that is, 

yR = k− �� − �� 00 0 −4�L 0 −2l ∙ �, yR =
m
no
−1 − �L 00 − √�� − 1 0�L 0 √2p

qr ∙

�yR =
m
no
−1 − �L 00 √�� − 1 0�L 0 −√2p

qr ∙ �.                  (40) 

By a direct computation, we get det(U − VW�) = 2V� +5V� + 2V − 1 (see A as the Jacobian matrix of the function M1 − �� − +,+1L , (2�� − 1)��, +,L − 2���N, computed at %��∗(�), ��∗(�), ��∗(�)) = M2, −2, ��N ). Solving the equation det(U − VW�) = 0 , we obtain the solutions V� = −1, V� =i�t√�u� , V� = i�i√�u� , so the associated linearized system is 

unstable. For the equilibrium point M1,0, − √�L N,  we get det(v − VW�) = −2V� + %4 − √2)V� + 3√2V + 2 + 2√2  

(see B as the Jacobian matrix of the function M1 − �� −+,+1L , (2�� − 1)��, +,L − 2���N, computed at %��∗(�), ��∗(�), ��∗(�)) = M1,0, − √�L N ). The equation det(v −VW�) = 0  gives the solutions V� = −1, V� = −1 − √�� , V� =√2. Consequently, the associated linearized system is 

unstable. For the equilibrium point M1,0, √�L N, we get det(w −VW�) = −2V� + %−4 − √2)V� − 3√2V + 2 − 2√2  (see C as 

the Jacobian matrix of the function M1 − �� − +,+1L , (2�� −1)��, +,L − 2���N, computed at %��∗(�), ��∗(�), ��∗(�)) =M1,0, √�L N). The equation det(w − VW�) = 0 gives the solutions V� = −1, V� = −1 + √�� , V� = −√2. Consequently, the 

associated linearized system is asymptotically stable. 

Proposition 3.4.1 For the non-linear system of differential 

equations (Phytoplankton Growth Model) 

*+,*- = 1 − �� − +,+1L , *+1*- = (2�� − 1)��, *+F*- = +,L − 2���,  (41) 

the linearizations around the equilibrium points 
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M2, −2, ��N , M1,0, − √�L N , M1,0, √�L N                 (42) 

are 

yR = k− �� − �� 00 0 −4�L 0 −2l�, yR =
mn
o−1 − �L 00 − √�� − 1 0�L 0 √2pq

r�, yR =

mn
o−1 − �L 00 √�� − 1 0�L 0 −√2pq

r�.                   (43) 

Moreover, the associated linearized systems are: unstable 

(in the case of the equilibrium points M2, −2, ��N , M1,0, √�L N) 

and asymptotically stable (in the case of the equilibrium 

point	(1,0, √�L ). 
4. Conclusions 

In this paper, we considered some special differential 

systems (taken from the literature) and we studied the 

associated geometric dynamics. Taking into account the 

winds theory, we succeeded to derive some second-order 

differential equations which permit us to describe the winds 

produced by the special flows (Hopf, Rabinovich, etc.) and 

Euclidean metric. Also, a stability analysis of considered 

models is provided. 
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